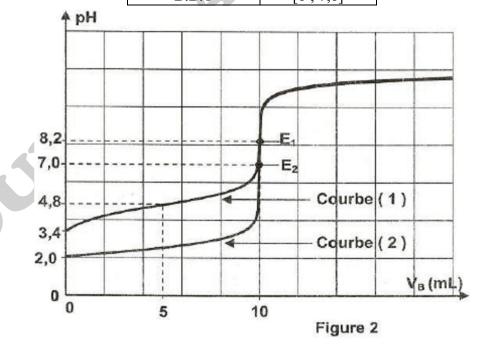
Exercice 1


On dispose de deux solutions aqueuses de même concentration molaire initiale C_A, l'une de chlorure d'hydrogène HC/(acide fort) et l'autre d'acide éthanoïque CH₃COOH.

On dose, séparément, un volume $V_A = 10$ mL de chacune des deux solutions par une solution aqueuse d'hydroxyde de sodium NaOH (base forte), de concentration molaire $C_B = 0.01$ mol.L⁻¹.

A l'aide d'un pH-mètre, on suit l'évolution du pH du milieu réactionnel en fonction du volume V_B de la solution d'hydroxyde de sodium ajoutée. On obtient les courbes (1) et (2) de la figure-2.

- 1/ a- Montrer que la courbe (2) correspond au dosage de la solution aqueuse de chlorure d'hydrogène.
- b- Faire le schéma annoté du montage de dosage.
- c- Ecrire l'équation chimique de la réaction de ce dosage.
- d- Quelle est la nature du mélange à l'équivalence ? Justifier.
- e- En exploitant la courbe (2), déterminer la valeur de C_A.
- 2/ Montrer que l'acide éthanoïque est un acide faible.
- 3/ a- Ecrire l'équation chimique de la réaction d'ionistaion de l'acide éthanoïque dans l'eau.
- b- Quelle est la nature du mélange à l'équivalence ? Justifier.
- c- Dresser le tableau descriptif d'évolution du système correspondnat à la réaction précédente.
- d- Etablir en fonction de C_A et [H₃O⁺], l'expression de la constante d'acidité K_a du couple CH₃COOH/CH₃COO⁻. Calculer la valeur de son pK_a.
- e- Retrouver cette valeur par exploitation de la courbe (1). Justifier.
- f- Qu'appelle-t-on la réaction pour V_B = 5 mL ? Quelles sont ses propriétés ?
- 4/ a- Définir un indicateur coloré de pH.
- b- Quel indicateur coloré, parmi ceux proposés ci-dessous, convient le mieux pour chaque dosage?

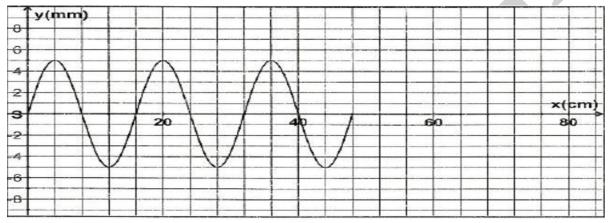
Indicateur coloré	Zone de virage
Hélianthine	[3,1;4,4]
φ.φ.	[8,2;10]
Rouge de méthyle	[4,2;6,2]
B.B.T	[6 : 7.6]

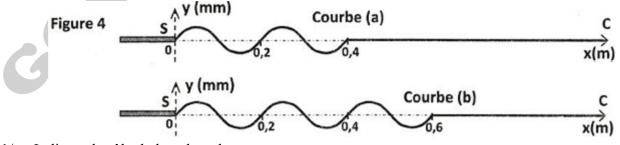
Exercice 2

Une corde élastique de longueur L=80 cm est tendue horizontalement. Son extrémité S est liée à une lame vibrante en mouvement sinusoïdal vertical d'équation : $y_S(t) = a.\sin(\omega t + \phi_S)$ pour $t \ge 0$. L'autre extrémité est munie d'un dispositif qui empêche la réflexion des ondes. L'amortissement est supposé nul. 1/ L'aspect de la corde à un instant t_0 donné est représenté dans la figure-5.

a- Définir la longueur d'onde λ .

- b- A l'aide de la figure-5:
 - ✓ déterminer l'amplitude de vibration des différents points de la corde atteints par l'onde ainsi que la valeur de la longueur d'onde λ .
 - ✓ montrer que la phase initiale du mouvement de la source est : $\varphi_S = \pi$ rad.
- 2/a- Sachant qu'un point M_1 de la corde d'abscisse $x_1 = 24$ cm au repos, est atteint par le front d'onde à l'instant $t_1 = 12 \text{ ms}$:
 - ✓ calculer la célérité de l'onde :
 - ✓ en déduire la valeur de la période de vibration de la lame excitatrice.
- b- Déterminer en fonction de λ , la distance séparant le point M_1 de la source S et en déduire la phase initiale du point M₁.
- c- Ecrire l'équation horaire du mouvement du point M₁ de la corde.
- 3/ a- Déterminer la valeur de l'instant t₀ auquel correspond l'aspect de la corde, représenté dans la
- b- Déduire de l'aspect de la corde à l'instant t_0 , son aspect l'instant $t_2 = 36$ ms.




Fig.5

Exercice 3

Considérons une corde élastique SC de longueur L = SC = 1 m, tendue horizontalement. Son extrémité S est reliée à une lame qui vibre perpendiculairement à la direction SC (figure-3). Elle est animée d'un mouvement rectiligne sinusoïdal d'amplitude a = 3 mm, de fréquence N et d'élongation instantanée $y_S(t) = 3.10^{-3} \sin(2\pi Nt + \varphi_S)$ exprimée en m. le mouvement de S débute à l'instant t = 0.

L'autre extrémité C est reliée à un support fixe à travers une pelote de coton qui empêche toute réflexion d'onde. L'amortissement de l'onde, le long de la corde, est supposé négligeable.

Les courbes (a) et (b) de la figure-4 représentent respectivement les aspects de la corde aux instants t_a et t_b tel que $\Delta t = t_a$ et $t_b = 0.02$ s.

- 1/ a- Indiquer le rôle de la pelote de coton.
- b- Expliquer pourquoi cette onde est dite transversale.
- 2/ a- Déterminer graphiquement la valeur de la longueur d'onde λ . b- Montrer que la célérité de l'onde est $v=10 \text{ m.s}^{-1}$. En déduire la valeur de la fréquence N de la lame vibrante.
- c- Déterminer les instants t_a et t_b.

- 3/a- Etablir l'équation horaire du mouvement d'un point M de la corde tel que SM = x au repos.
- b- Montrer que la phase $\phi_S = \pi$ rad.
- c- Préciser, en le justifiant, la valeur de l'instant t_f à partir duquel l'onde atteint toute la corde.
- d- Déterminer, à cet instant t_f , le nombre et les positions des points P_i de la corde qui vibrent en quadrature retard de phase par rapport à la source S.

